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Abstract

We suggest a notion of arithmetic-geometric mean (AGM) of four
numbers, and relate the definition to duplication formulae for genus 2
theta functions, enabling us to give a generalisation of Gauss’s work
on the classical AGM, as described in [5].
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In this paper, we recall the notion of arithmetic-geometric mean (AGM), due
to Gauss, and suggest a definition of an AGM of four numbers. According to
[2], this definition was first used by Borchardt [1]. When the four numbers are
real and positive, we prove several lemmas demonstrating that the behaviour
of our AGM resembles that of the classical AGM. Just as for the classical
AGM, however, there is some ambiguity in our definition, arising from the
fact that there is no canonical square root at each step. In the classical case,
Gauss was able to completely determine all possible limits of the AGM (see
Theorem 1.3 below). This paper constitutes our first attempt to generalise
Gauss’s work to higher genus AGMs, and in the same way as Gauss (see
[5]), we analyse the possible values that our 4-variable AGM can take, using
the theory of theta functions in genus 2. Most of our analysis generalises to
arbitrary genus, and we restrict attention to genus 2 largely for notational
convenience.

1 Introduction: the AGM of Gauss

In this section we briefly review the theory of Gauss’s AGM of two numbers.
Suppose we are given two numbers, a and b. We can form the arithmetic mean
A = a+b

2
and the geometric mean B = (ab)

1
2 . By the AM-GM inequality, if

a and b are real and positive, then A ≥ B.
Gauss suggested iterating this process. Set a0 = a and b0 = b, and define

inductively sequences (an) and (bn) as follows:

an+1 =
an + bn

2
and bn+1 = (anbn)

1
2 .

We refer the reader to [5] for complete details of this operation. Let us first
remark that there is an ambiguity in this definition, arising from the choice
of sign in the square root. This means that for all initial values, there are
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an uncountable number of resulting sequences (an) and (bn). However, as is
pointed out in [5], all of these possible sequences converge; for any choice of
initial values, the two sequences (an) and (bn) converge to a common limit
whatever choices are made for bn at every step, which we call a value of
the multi-valued AGM function. Only countably many of these values are
non-zero.

1.1 The real and positive case

Suppose that a0 = a and b0 = b are real and positive. Then we may choose
the positive value of the square root at every stage of the algorithm, to obtain
a ‘canonical’ value M(a, b) for the AGM, which is also real and positive. If
a = b, then M(a, b) = a, so we assume a and b are different, and, without
loss of generality, we suppose a > b. The arithmetic mean-geometric mean
inequality implies that an > bn for all n.

It seems to have already been known to Legendre, and was certainly
known to Gauss, that this value M(a, b) is related to the value of a certain
elliptic integral:

∫ π
2

0

dθ√
a2 cos2 θ + b2 sin2 θ

=
π

2M(a, b)
.

One of the wonderful properties of the AGM is the speed at which the two se-
quences converge to the common limit; this enables one to perform extremely
quick calculations of elliptic integrals. It is easy to prove that

an+1 − bn+1 < C(an − bn)2

for some constant C depending on a and b, which gives quadratic convergence.

1.2 The complex case

If, however, the initial values a and b are arbitrary complex numbers, then
there is no obvious canonical choice of the square root in the geometric mean.
Nonetheless, Gauss was able to completely determine all possible values taken
by the AGM: see [5] for a full proof of the theorem we state below.

In fact, there is a ‘correct’ choice of square root ([5], p.284):

Definition 1.1 Suppose a, b ∈ C×, and a 6= ±b. Then a square root B of
ab is the right choice if |A−B| ≤ |A + B|, and, when |A−B| = |A + B|, we
also have Im(B/A) > 0.
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(If a and b are positive and real, this definition coincides with the ‘natural’
choice of positive square root.) Using this, we can make the following defin-
ition ([5], p.287):

Definition 1.2 The simplest value M(a, b) of the AGM is defined to be the
value taken by the AGM if, at every stage, the right choice of square root is
taken.

(Thus this coincides with the previous definition of M(a, b) when a and b are
positive and real.) We now state the theorem, due to Gauss ([5], Theorem
2.2):

Theorem 1.3 Suppose a, b ∈ C× satisfy a 6= ±b and |a| ≥ |b|. Then µ is
a value of the AGM of a and b if and only if there exist coprime integers
c ≡ 0 (mod 4) and d ≡ 1 (mod 4) such that

1

µ
=

d

M(a, b)
+

ic

M(a + b, a− b)
.

2 A four variable AGM

2.1 The definition

In the proof of Gauss’s Theorem, much use is made of duplication formulae
for theta functions. Motivated by the corresponding formulae for (Siegel)
theta functions in genus 2 (see below), we propose the following definition:

Definition 2.1 Let a, b, c and d be given, and define

A =
1

4
(a + b + c + d),

B =
1

2
(
√

ab +
√

cd),

C =
1

2
(
√

ac +
√

bd),

D =
1

2
(
√

ad +
√

bc).

Although there appear to be six choices of signs in the square root at every
step, these are not independent; all are determined by the four choices

√
a,√

b,
√

c and
√

d.
Note also that a permutation of a, b, c and d fixes A and permutes B,

C and D, giving a morphism S4 −→ S3; the kernel of this morphism is the
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Klein 4-group, and indeed any double transposition of a, b, c and d leaves A,
B, C and D fixed.

In the same way as above, we may iterate this process to find uncoutably
many sequences (an), (bn), (cn) and (dn). Exactly as in [5], we may ask
which values may occur as the limits of these sequences. The same methods
which Gauss used to solve the corresponding problem for the 2-variable AGM
(Theorem 1.3) also work in the 4-variable case, as we explain below. The
relation with Richelot’s theory of abelian integrals (see [10]) may form the
subject of future work.

As in the 2-variable AGM, we will treat the cases where all variables are
real and positive first, just to indicate some of the basic properties of the
function.

2.2 The real and positive case

We suppose a, b, c and d are real and positive. In this case, we suppose that
all square roots are taken to be positive.

2.2.1 Easy lemmas

Lemma 2.2 Suppose a > b > c > d. Then A > B > C > D.

Proof. Firstly, note that the classical AM-GM inequality implies that A >
B. Also,

B − C =
1

2
(
√

b−√c)(
√

a−
√

d),

B −D =
1

2
(
√

b−
√

d)(
√

a−√c),

C −D =
1

2
(
√

c−
√

d)(
√

a−
√

b),

so that if a > b > c > d, it follows that A > B > C > D. ¤

In a similar way, we can read off precisely what conditions on a, b, c and
d imply that two of A, B, C and D are equal.

We now iterate the process, to find sequences (an), (bn), (cn) and (dn).

Lemma 2.3 The sequences (an), (bn), (cn) and (dn) have a common limit,
M(a, b, c, d), and convergence is quadratic.
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Proof. Note that the sequence (an) (resp. (dn)) is monotonically decreasing
(resp. increasing), and is bounded below (resp. above) by d0 (resp. a0). Both
these sequences therefore converge.

As both sequences (an) and (dn) converge, we see from the definition
of an+1 and dn+1 that the sequences (bn + cn) and (

√
bncn) converge. But

now it follows easily that the sequences (
√

bn) and (
√

cn), and therefore the
sequences (bn) and (cn), converge. Suppose the limits of the sequences (an),
(bn), (cn) and (dn) are α, β, γ and δ. Certainly α ≥ β ≥ γ ≥ δ. Then, from
the definition of an+1, we see that α = 1

4
[α+β+γ+δ], so that α = β = γ = δ.

To deduce quadratic convergence, note:

an+1 − dn+1 =
1

4

[
(
√

an −
√

dn)2 + (
√

bn −√cn)2
]

≤ 1

2
(
√

an −
√

dn)2

=
1

2

[
an − dn√
an +

√
dn

]2

≤ 1

2

[
an − dn

2
√

d0

]2

=
1

8d0

(an − dn)2.

It follows that there is a constant C such that an+1− dn+1 ≤ C(an− dn)2, so
all four sequences converge quadratically to the common limit M(a, b, c, d).
¤

Note that M(a, a, a, a) = a and M(λa, λb, λc, λd) = λM(a, b, c, d).

2.2.2 The inverse map

We sketch the easy verification that, given a quadruple {A, B, C, D} with
A > B > C > D, there exist, in general, two possible preimages {a, b, c, d}
with a > b > c > d under a single step of the algorithm. This is reflected in
the observation that the Richelot isogeny ([8], [10]) between two hyperelliptic
curves of genus 2 is derived from a 2-2 correspondence—see [3] for more
details.

Observe that

A + B =
1

4
[(
√

a +
√

b)2 + (
√

c +
√

d)2],

C + D =
1

2
[(
√

a +
√

b)(
√

c +
√

d)].
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It follows that
√

a +
√

b =
√

A + B + C + D +
√

A + B − C −D,√
c +

√
d =

√
A + B + C + D −

√
A + B − C −D.

as certainly
√

c +
√

d <
√

a +
√

b.
In the same way,

A−B =
1

4
[(
√

a−
√

b)2 + (
√

c−
√

d)2],

C −D =
1

2
[(
√

a−
√

b)(
√

c−
√

d)].

(Note that A−B ≥ C −D by the AM-GM inequality.) It follows that

{√a−
√

b,
√

c−
√

d}
= {

√
A−B + C −D +

√
A−B − C + D,

√
A−B + C −D −

√
A−B − C + D}

and so there are two possibilities, depending whether
√

a−
√

b is to be taken
larger or smaller than

√
c−

√
d.

This concludes the proof that our 4-variable AGM is a 2-to-1 map, at
least when restricted to positive real numbers.

3 Theta functions and the AGM

As is noted in [3] and in [5], Gauss’s 2-variable AGM has strong connections
with the classical theta functions. Our definition of a 4-variable AGM was in
turn motivated by the duplication formulae for theta functions in genus 2. In
this section, however, we will work in arbitrary genus, and will later restrict
to genus 2 largely for notational reasons. We use the standard notation for
Siegel modular forms of genus g; Hg will denote the Siegel upper-half space
of genus g.

3.1 Theta functions

Next, we recall the definition of certain theta functions in genus g.
Let a, b ∈ (1

2
Z/Z)g, and define

θ

[
a
b

]
(Ω) =

∑

n∈Zg

exp(πit(n + a)Ω(n + a) + 2πit(n + a)b).
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We will be particularly concerned with those theta series where a = 0. For
simplicity, if b ∈ (1

2
Z/Z)g, we write

θb = θ

[
0
b

]
.

Theta series are examples of Siegel modular forms of weight 1
2

(see [9],
p.189).

Our purpose is slightly different: we study the collection of theta func-
tions, and show that they embed certain quotients of Hg into projective
space.

Let b0 = 0,b1, . . . ,b2g−1 be some enumeration of the vectors in (1
2
Z/Z)g.

Definition 3.1 For Ω ∈ Hg, and n ≥ 1, define the function Θ(n)(Ω) by

Θ(n)(Ω) = [θn
b0

(Ω) : θn
b1

(Ω) : · · · : θn
b2g−1

(Ω)] ∈ P2g−1(C).

Note that as the functions θb do not vanish simultaneously on Hg, this
function does indeed take values in P2g−1(C) (see also [6]).

Definition 3.2 We define Γ(n) to be the group

{γ ∈ Sp2g(Z)|Θ(n)(γΩ) = Θ(n)(Ω) for all Ω ∈ Hg}.

Thus Θ(n) : Γ(n)\Hg ↪→ P2g−1(C).

We first record the following special case of [9], p.190.

Corollary 3.3

θ

[ −Cb
Ab

]((
A B
C D

)
Ω

)
=

ζ. det(CΩ + D)
1
2 exp(−πitbtACb)θ

[
0
b

]
(Ω)

for Ω ∈ Hg and

(
A B
C D

)
∈ Γ1,2, the group of integral symplectic 2g × 2g-

matrices such that diag(tAC) and diag(tBD) are even.

We first explicitly compute the groups Γ(i) in the cases i = 1, 2.

Theorem 3.4 We have:
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1. Γ(1) =

{(
A B
C D

)
∈ Sp2g(Z)

∣∣∣∣
A ≡ D ≡ Ig (mod 2), C ≡ 0 (mod 4)
diag(B) is even, diag(C) ≡ 0 (mod 8)

}
.

2. Γ(2) =

{(
A B
C D

)
∈ Sp2g(Z)

∣∣∣∣
A ≡ D ≡ Ig (mod 2), C ≡ 0 (mod 2)
diag(B) is even, diag(C) ≡ 0 (mod 4)

}
.

Proof. In order that each theta function θb should be preserved by the

action of

(
A B
C D

)
, rather than sent to a theta function with different

characteristics, we require from Corollary 3.3 that, for all b,

• Cb ∈ Zg,

• (A− Ig)b ∈ Zg,

which imply that C ≡ 0 (mod 2) and A ≡ Ig (mod 2). As

(
A B
C D

)
∈

Sp2g(Z), we also deduce that D ≡ Ig (mod 2).

Then each group Γ(n) is contained in the group
{(

A B
C D

)
∈ Sp2g(Z)

∣∣∣∣
A ≡ D ≡ Ig (mod 2), C ≡ 0 (mod 2)
diag(B) is even

}
.

We just do the case n = 2 which will be most important for us. The case

n = 1 is similar. Then a matrix γ =

(
A B
C D

)
∈ Γ(2) if and only if there is

a constant α such that, for each b,

θ2
b(γΩ) = αθ2

b(Ω)

for all Ω. By considering b = 0, we see that α = ζ2. det(CΩ + D). It follows
that, in order that this constant be the same for all b, we need

exp(−2πitbtACb) = 1

for all b. This is equivalent to the condition that tbtACb ∈ Z for all b.
Equivalently, we require that txtACx ∈ 4Z for all x ∈ Zg. This is equivalent
to the pair of conditions:

• tAC ≡ 0 (mod 2),

• diag(tAC) ≡ 0 (mod 4).

As A ≡ Ig (mod 2), the first condition is automatic, and then the second is
equivalent to diag(C) ≡ 0 (mod 4), as required. ¤

(Note that none of the groups Γ(n) act freely on Hg, as all of them contain
−I2g.)
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Definition 3.5 Define the following subset of Hg:

F (2) =

{
Ω ∈ Hg

∣∣∣∣ |det(CΩ + D)| ≥ 1 for all

(
A B
C D

)
∈ Γ(2)

}
.

Note that every point of Hg may be mapped to some point in F (2) under
the action of Γ(2). Indeed, F (2) contains infinitely many copies of fundamental
domains for Γ(2) in Hg.

If γ denotes the matrix

( √
2Ig 0
0 1√

2
Ig

)
∈ Sp2g(R), so that γΩ = 2Ω,

then composition of the map Θ(1) with the isomorphism

α : Γ\Hg
∼−→ γΓγ−1\Hg

Ω 7→ 2Ω

induces the following embedding:

Θ(1) ◦ α : Γ2,4\Hg ↪→ P2g−1(C)

where

Γ2,4 =

{(
A B
C D

)
∈ Γ(2)

∣∣∣∣ diag(B) ≡ diag(C) ≡ 0 (mod 4)

}
,

and Γ(2) denotes the principal congruence subgroup of level 2 in Sp2g(Z)

(this gives an explicit verification of [6], p.181, where the composition of Θ(1)

and α is the map denoted Th(2)).

3.2 Duplication formulae

Now we fix g = 2. However, similar results exist for higher genus Siegel theta
functions.

Let Ω ∈ Hg. We define, for (n1, n2) ∈ Z2,

qΩ

(
n1

n2

)
= exp(πi(n1 n2)Ω

(
n1

n2

)
).
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We define the following theta functions:

θ00(Ω) =
∑

(n1
n2

)∈Z2

qΩ

(
n1

n2

)
,

θ01(Ω) =
∑

(n1
n2

)∈Z2

(−1)n2qΩ

(
n1

n2

)
,

θ10(Ω) =
∑

(n1
n2

)∈Z2

(−1)n1qΩ

(
n1

n2

)
,

θ11(Ω) =
∑

(n1
n2

)∈Z2

(−1)n1+n2qΩ

(
n1

n2

)
.

In the notation of the previous section, these are θ(0,0), θ(0, 1
2
), θ( 1

2
,0) and θ( 1

2
, 1
2
)

respectively.

Definition 3.6 For Ω ∈ H2, and n ≥ 1, define the function Θ(n)(Ω) by

Θ(2)(Ω) = [θ2
00(Ω) : θ2

01(Ω) : θ2
10(Ω) : θ2

11(Ω)] ∈ P3(C).

We first state the duplication formulae, which motivated our definition of
the 4-variable AGM.

Theorem 3.7 Let Ω ∈ H2. Then we have the following duplication formu-
lae:

Ω00(2Ω)2 =
1

4
[θ00(Ω)2 + θ01(Ω)2 + θ10(Ω)2 + θ11(Ω)2],

Ω01(2Ω)2 =
1

2
[θ00(Ω)θ01(Ω) + θ10(Ω)θ11(Ω)],

Ω10(2Ω)2 =
1

2
[θ00(Ω)θ10(Ω) + θ01(Ω)θ11(Ω)],

Ω11(2Ω)2 =
1

2
[θ00(Ω)θ11(Ω) + θ01(Ω)θ10(Ω)].

Proof. Note that

t(n + m)Ω(n + m) + t(n−m)Ω(n−m) = 2(tnΩn + tmΩm).

It follows that

qΩ(n + m).qΩ(n−m) = q2Ω(n)q2Ω(m).
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Then

θ00(Ω)2 + θ01(Ω)2 + θ10(Ω)2 + θ11(Ω)2

=
∑

m∈Z2

∑

n∈Z2

qΩ(m)qΩ(n)[1 + (−1)m2+n2 + (−1)m1+n1 + (−1)m1+m2+n1+n2 ]

= 4
∑

m∈Z2

∑

n∈Z2
m≡n(mod2)

qΩ(m)qΩ(n)

= 4
∑

m′∈Z2

∑

n′∈Z2

qΩ(m′ + n′)qΩ(m′ − n′)

= 4
∑

m′∈Z2

∑

n′∈Z2

q2Ω(m′)q2Ω(n′)

= 4θ00(2Ω)2.

The remaining relations are similar. ¤
The duplication formulae are, of course, special cases of more general

addition formulae for theta functions.

Corollary 3.8 The set

{θ00(2Ω)2, θ01(2Ω)2, θ10(2Ω)2, θ11(2Ω)2}

may be derived from the set

{θ00(Ω)2, θ01(Ω)2, θ10(Ω)2, θ11(Ω)2}

by applying the AGM process.

Proof. This is clear from the duplication formulae. ¤
So doubling of the period matrix Ω ∈ H2 corresponds to a possible appli-

cation of the AGM.
As an immediate corollary, we have the following lemma (compare [5],

Lemma 2.3):

Lemma 3.9 Let a, b, c and d be in C×, and suppose there exists Ω ∈ H2

such that
Θ(2)(Ω) = [a : b : c : d].

Let

µ =
a

θ2
00(Ω)

=
b

θ2
01(Ω)

=
c

θ2
10(Ω)

=
d

θ2
11(Ω)

.

12



If

an = µθ2
00(2

nΩ),

bn = µθ2
01(2

nΩ),

cn = µθ2
10(2

nΩ),

dn = µθ2
11(2

nΩ),

then the sequence of quadruples (an, bn, cn, dn) may be derived from the AGM
process, and the common limit is given by µ.

Proof. Clearly (a0, b0, c0, d0) = (a, b, c, d); the previous corollary implies that
the sequence (an, bn, cn, dn) may be given by the AGM. As Ω ∈ H2, its

imaginary part is totally positive. It follows that q2nΩ

(
n1

n2

)
−→ 0 as

n −→ ∞, for fixed n1 and n2. Then θij(2
nΩ) −→ 1 as n −→ ∞ for i,

j ∈ {0, 1}, so that the common limit is visibly µ. ¤

3.3 Other possible values for the AGM

In the previous section, we observed that Θ(2)(2Ω) was a possible answer
after applying one step of the AGM process to Θ(2)(Ω). In this section, we
compute all other possibilities.

The answer Θ(2)(2Ω) was obtained by choosing the square root θij(Ω) of
θ2

ij(Ω), rather than −θij(Ω).
Using slightly more general duplication formulae (see, for example, [8],

p.38), together with Corollary 3.3 above, we find easily the following:

Proposition 3.10 Suppose [a : b : c : d] = Θ(2)(Ω). Then all possible results
of the AGM map also lie in the image of Θ(2).

Sketch proof. After scaling, we may suppose without loss of generality that
a = θ2

00(Ω) etc. Recall that

A =
1

4
(a + b + c + d),

B =
1

2
(
√

a
√

b +
√

c
√

d),

C =
1

2
(
√

a
√

c +
√

b
√

d),

D =
1

2
(
√

a
√

d +
√

b
√

c).
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We just consider one case; the others are similar. Suppose we choose
the roots θ00(Ω), θ01(Ω), θ10(Ω) and −θ11(Ω). Then using the duplication
formulae of [8], we see that the values of (A,B, C, D) are given by

(θ2
00(2Ω), θ2

[
(1

2
, 0)

(0, 1
2
)

]
(2Ω), θ2

[
(0, 1

2
)

(1
2
, 0)

]
(2Ω),−θ2

[
(1

2
, 1

2
)

(1
2
, 1

2
)

]
(2Ω)).

Using Corollary 3.3, we see that now

[A : B : C : D] = Θ(2)







I2 0(
0 1
1 0

)
I2


 (2Ω)


 .

In the same way, all of the possible images are of the form Θ(2)

((
I2 0
C I2

)
(2Ω)

)
,

where C runs over the set

0,

(
2 0
0 0

)
,

(
0 0
0 2

)
,

(
2 0
0 2

)
,

(
0 1
1 0

)
,

(
2 1
1 0

)
,

(
0 1
1 2

)
,

(
2 1
1 2

)
,

as claimed. ¤
We now make a generalisation of Definitions 1.1 and 1.2.

Definition 3.11 Given a quadruple (a, b, c, d) such that there exists Ω ∈
F (2) with Θ(2)(Ω) = [a : b : c : d], we say that (

√
a,
√

b,
√

c,
√

d) is a right
choice of square roots of (a, b, c, d) if Θ(1)(Ω) = [

√
a :
√

b :
√

c :
√

d]. We say
a sequence of quadruples (an, bn, cn, dn) derived from the AGM algorithm is
a good sequence if a right choice of square roots is taken at all but finitely
many steps. Finally, a simplest value of the AGM is a value of the AGM
corresponding to a sequence in which a right choice of square root is taken
at each step.

Note that good sequences converge: the analysis above shows that the
right choice of square root corresponds to doubling the period matrix—
Lemma 3.9 now implies that the sequences converge to a common limit.
We say that values of the AGM of good sequences are good values of the
AGM.

Of course, right choices are only defined up to sign, but note also that in
any case the right choice is not uniquely defined in general—if Ω lies on the
boundary of F (2), then there may be several possible right choices of square
root. It would be easy to distinguish a unique one by giving an additional
criterion, but this does not seem to us to be useful at the moment. The
main weakness in our results is that we have so far been unable to translate
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this definition of ‘right’ choice of square roots into one solely involving a, b,
c and d. We guess, however, that the right choice of square roots will be
the one where |√a +

√
b +

√
c +

√
d| is maximised. We also conjecture (less

confidently) that all sequences which converge to a non-zero limit are good
sequences.

Lemma 3.12 For all Ω ∈ H2, there exists N such that 2nΩ ∈ F (2) for all
n ≥ N .

Proof. By [7], §3, Lemma 1, there are only finitely many pairs of bot-
tom rows (C,D) (up to multiplication by a unimodular matrix) such that
|det(CΩ + D)| ≤ 1. Choose N such that 2N - C for every such C 6= 0. Then
|det(C.2nΩ + D)| > 1 for all n ≥ N , and so 2nΩ ∈ F (2). ¤

It follows that all sequences obtained by successive period doubling as
in Lemma 3.9 are good sequences. The same proof shows that in all such
sequences, there is eventually a unique right choice (up to sign) of square
roots—eventually 2nΩ will lie in the interior of F (2).

3.4 The inverse map

Next, we explain that, given a point in the image of Θ(2), all of its possible
preimages are also in the image of Θ(2), and we make all these explicit.

Fix Ω ∈ H2, and consider the point Θ(2)(2Ω). Let

A = θ2
00(2Ω),

B = θ2
01(2Ω),

C = θ2
10(2Ω),

D = θ2
11(2Ω).

Proposition 3.13 If (a, b, c, d) is a quadruple mapping to (A,B, C, D) un-
der the AGM process, then [a : b : c : d] is in the image of Θ(2).
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Proof. Note that

A + B + C + D =

[
θ00(Ω) + θ01(Ω) + θ10(Ω) + θ11(Ω)

2

]2

,

A + B − C −D =

[
θ00(Ω) + θ01(Ω)− θ10(Ω)− θ11(Ω)

2

]2

,

A−B + C −D =

[
θ00(Ω)− θ01(Ω) + θ10(Ω)− θ11(Ω)

2

]2

,

A−B − C + D =

[
θ00(Ω)− θ01(Ω)− θ10(Ω) + θ11(Ω)

2

]2

,

using the duplication formulae. Considering all possible square roots of these,
and using the same method as §2.2, we can write down all possibilities for
(
√

a,
√

b,
√

c,
√

d). Just as in the real case, we find that there are essentially
two possibilities, together with their permutations under the Klein 4-group,
making eight possible preimages in total. It is easy to check that they are
given by Θ(2)(Ω + B) where B runs over the set

0,

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 0
0 1

)
,

(
0 1

2
1
2

0

)
,

(
0 1

2
1
2

1

)
,

(
1 1

2
1
2

0

)
,

(
1 1

2
1
2

1

)
,

as claimed. ¤

3.5 Theta functions and moduli spaces

Given initial values, a, b, c and d, we would like to interpret these as values
of the theta functions as in the previous section. That is, we would like to
find Ω ∈ H2 such that

Θ(2)(Ω) = [a : b : c : d].

Recall that the map Θ(2) induces an embedding

Θ(2) : Γ(2)\H2 ↪→ P3(C)

embedding the quotient Γ(2)\H2 as an open subset of projective space. We
may compactify the quotient using the Satake compactification (see [4]).
The precise details of this procedure are rather complicated, and we content
ourselves with a few observations.

The compactification is of the form Γ(2)\H∗2, for some analytic space H∗2,
formed by adding to the boundary ofH2 some copies of the usual compactified
upper half complex plane, H∗1. The action of Γ(2) extends to the boundary
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components, and the resulting quotient Γ(2)\H∗2 looks like Γ(2)\H2 with a
finite number of modular curves (i.e., isomorphic to quotients of H∗1 by sub-
groups of finite index in SL2(Z)). In particular, the boundary components
have codimension 2 in the compactification.

Then Θ(2) extends to the compactification Γ(2)\H2, and Θ(2)(Γ(2)\H2)
must be all of P3(C).

It follows that the image of Θ(2) on the open variety Γ(2)\H2 is all of
P3(C) apart from a finite number of curves, so the complement of the image
of Θ(2) in P3(C) has codimension 2.

3.6 Values of the 4-variable AGM

In this section we prove our main theorem, which should be viewed as a
partial generalisation of Gauss’s Theorem 1.3.

Theorem 3.14 For almost all quadruples (a, b, c, d), there exists Ω ∈ H2

such that the good values of the AGM are precisely the values of the following
set: {

a

θ2
00(M(Ω))

∣∣∣∣M ∈ Γ(2)

}
.

Further, the simplest values of the AGM are those of maximum modulus.

Proof. In the previous section, we observed that there is an embedding

Θ(2) : Γ(2)\H2 ↪→ P3(C),

embedding the quotient Γ(2)\H2 as an open subset of projective space and
extending to the compactification.

Given any quadruple (a, b, c, d), we get a point [a : b : c : d] ∈ P3(C).
We know that Θ(2)(Γ(2)\H∗2) = P3(C), and that the image of Γ(2)\H∗2 has
complement in P3(C) of codimension 2. Thus, unless [a : b : c : d] happens
to lie in this set of codimension 2, there is some point Ω ∈ H2 such that
Θ(2)(Ω) = [a : b : c : d]. We suppose that (a, b, c, d) is not in this exceptional
set (by Proposition 3.10, nor are any of its iterates under the AGM process).

Because of our calculation of the monodromy of Θ(2), we know that
Θ(2)(M(Ω)) = [a : b : c : d] for all M ∈ Γ(2). By Lemma 3.9, it follows
that all of the values a

θ2
00(M(Ω))

are good values of the AGM as M runs over

Γ(2).
Conversely, suppose we are given a good value µ of the AGM. Then

eventually all steps, all after the Nth say, arise by taking a ‘right’ choice
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for square roots. Then µ is a simplest value of the AGM of the quadru-
ple (aN , bN , cN , dN). There is ΩN ∈ H2 which corresponds to the quadru-
ple (aN , bN , cN , dN); using Proposition 3.13 repeatedly, we find a sequence
ΩN−1, . . . , Ω0 ∈ H2 such that Θ(2)(Ωi) = [ai : bi : ci : di] and such that

(an, bn, cn, dn) = µ(θ2
00(2

nΩ0), θ
2
01(2

nΩ0), θ
2
10(2

nΩ0), θ
2
11(2

nΩ)).

It follows that µ is obtained as a
θ2
00(Ω0)

for some Ω0; as Θ(2)(Ω0) = [a0 : b0 :

c0 : d0], we see also that Θ(2)(Ω0) = Θ(2)(Ω), so that Ω0 = M(Ω) for some
M , as required. This completes the proof that the two sets are equal.

The assertion that simplest values are those of maximal modulus follows
from the definition: by Corollary 3.3, a

θ2
00(Ω)

is maximal if |det(CΩ + D)| ≥ 1

for all M ∈ Γ(2), i.e., if Ω ∈ F (2). But the period doubling sequences, as in
Lemma 3.9, starting from such Ω necessarily give rise to simplest values, as
2nΩ ∈ F (2) for all n, so the right choice is made at every step. ¤

We now compute the values of ζ2
M for M ∈ Γ(2). For this, we use the

set of generators given in the appendix, together with the calculations in [9],
p.194. Mumford shows that the map M 7→ ζ2

M from Γ1,2 is multiplicative
and valued in fourth roots of unity. He further proves:

ζ

(
A 0
0 tA−1

)2

= det(A),

ζ

(
I2 B
0 I2

)2

= 1.

As

(
I2 0
C I2

)
is conjugate to

(
I2 −C
0 I2

)
, it follows that

ζ

(
I2 0
C I2

)2

= 1.

Note also that
(

3 2
4 3

)
=

( −1 0
0 −1

)(
1 0
2 1

)(
1 −2
0 1

)(
1 0
2 1

)
,

and it follows that ζ2
X(i) = −1 for all i. In particular, ζ2(M) takes values only

in ±1 for M ∈ Γ(2).
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Appendix: More about Γ(2)

The main aim of this appendix is to give a set of generators for the group

Γ(2) =

{(
A B
C D

)∣∣∣∣
A ≡ D ≡ Ig (mod 2), C ≡ 0 (mod 2)
diag(B) ≡ 0 (mod 2), diag(C) ≡ 0 (mod 4)

}

introduced earlier. We also derive a useful corollary (Lemma A.4).

Theorem A.1 A set of generators for Γ(2) is given by

•
(

A 0
0 tA−1

)
for A ≡ Ig (mod 2) integral and unimodular,

•
(

Ig B
0 Ig

)
for B integral symmetric and with even diagonal,

•
(

Ig 0
2C Ig

)
for C integral symmetric and with even diagonal,

• The matrices X(i) (i = 1, . . . , g), defined so that

X
(i)
ii = 3,

X
(i)
i,i+g = 2,

X
(i)
i+g,i = 4,

X
(i)
i+g,i+g = 3,

X
(i)
jk = δjk otherwise.

The proof of this theorem mimics that of [9], Proposition A1. First we have
the easy Lemma:

Lemma A.2 Let (m,n) ∈ Z2, not both 0. Under the transformations

A (x, y) 7→ (−x,−y),

B (x, y) 7→ (x + 2y, y),

C (x, y) 7→ (x, y + 4x),

X (x, y) 7→ (3x + 2y, 4x + 3y),

and their inverses, (m,n) may be mapped to one of

(0, d), (d, 0), (d, d), (d, 2d),

where d denotes the highest common factor (m,n).
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Proof. Without loss of generality, d = 1. Then each operation also gives
coprime integers.

• If |n| > 2|m|, apply C or its inverse; then |m| remains the same, and
|n| decreases unless m = 0, which happens at the point (0,±1) (if the
sign is negative, apply A).

• If |m| < |n| < 2|m|, apply X or its inverse; then both |m| and |n|
decrease.

• If |m| > |n|, apply B or its inverse; then |n| remains the same, and |m|
decreases unless n = 0, which happens at the point (±1, 0) (if the sign
is negative, apply A).

Repeat this operation until one reaches (0, 1), (1, 0), or a point with |m| = |n|
or |n| = 2|m|. In these latter cases, apply A to ensure that m is positive;
then one must be at (1, 1), (1,−1), (1, 2) or (1,−2). Applying X to (1,−1)
gives (1, 1); applying C to (1,−2) gives (1, 2). ¤

Proof of Theorem. We use induction on g. Let e1 be defined to be




1
0
...
0


.

Let γ ∈ Γ(2), and let




a1
...
ag

c1
...
cg




= γe1. Note that a1 is odd, every other

component is even, and c1 is divisible by 4.
Premultiplying γ by elements of our generating set allow us to perform

row operations on this vector of the following sorts:

Ai ai, ci 7→ −ai,−ci, all other aj, cj unaffected;

Bi ai, ci 7→ ai ± 2ci, ci, all other aj, cj unaffected;

Ci ai, ci 7→ ai, ci ± 4ai, all other aj, cj unaffected;

Bij ai, aj, ci, cj 7→ ai ± cj, aj ± ci, ci, cj all other ak, ck unaffected;

Cij ai, aj, ci, cj 7→ ai, aj, ci ± 2aj, cj ± 2ai all other ak, ck unaffected;

Xi ai, ci 7→ 3ai ± 2ci,±4ai + 3ci, all other aj, cj unaffected
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coming from special cases of the transformations of type A, B, C and X.
We first explain that there is a sequence of generators δ1, . . . , δN such that

δN . . . δ1γe1 = e1.

Step 1 Let d = (a1, c1), which is odd as a1 is. By the Lemma, applying
the transformations A1, B1, C1 and X1 changes (a1, c1) to (d, 0) (note that
4|c1, and this must remain the same after every step, so that (d, 0) is the
only possible answer).

Step 2 If a1 - ci for some i > 1, suppose d′ = hcf(a1, ci). Then apply
repeatedly B1i and C1i to change (a1, ci) to (d′, 0).

Step 3 Repeat so that a1|ci for all i ≥ 1; repeat Step 1 until c1 is again
0. Now a1 divides all ci. If a1 - ai, apply C1i so that the new value of c1 is
2ai. Repeat Step 1. Eventually a1 divides all ai and all ci. As matrices in
Γ(2) have determinant 1, the highest common factor of entries in any column
is 1. Thus a1 = ±1. Applying A1 allows us to take a1 = 1.

Step 4 Make all ci (for i > 1) zero by suitable application of C1i. Then
make c1 = 0 by applying C1.

Step 5 Now a1 = 1 and all other ai are even. The g× g matrix A which
is the identity, except for its first column, defined to be the vector of ai’s
is unimodular, integral and congruent to Ig modulo 2. The inverse of the

corresponding element of our generating set maps




a1
...
ag

0
...
0




back to e1.

After performing these steps, we arrive at a sequence δ1, . . . , δN with the
required property. Now define γ̃ = δN . . . δ1γ, so that γ̃e1 = e1. Define

eg+1 =




0
...
0
1
0
...
0




. Consider




b1
...
bg

d1

d2
...
dg




= γ̃eg+1. As γ̃ is symplectic and fixes e1

we see that d1 = 1. Further, γ̃ ∈ Γ(2), so 2|b1, d2, . . . , dg.
Step 6 Make b2, . . . , bg vanish by applying B1i suitably, and then make

b1 vanish by applying B1. (Note that these operations fix e1.)
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Step 7 Now form the g × g matrix D, whose first column is made up
of the vector of di’s, but is otherwise the identity. Let A = tD−1. Then A
is integral, unimodular and congruent to Ig modulo 2. The corresponding

element of the generating set fixes e1 and maps




0
...
0
d1

d2
...
dg




back to eg+1.

Then these steps give transformations δN+1, . . . , δM such that the matrix
δM . . . δN+1δN . . . δ1γ fixes both e1 and eg+1. Then restricting the action of
this matrix to the complement of the space spanned by e1 and eg+1 gives
a symplectic matrix of dimension 2(g − 1), and inductively, we see that our
putative generating set does indeed generate Γ(2). ¤

Remark A.3 We note that there seems to be an error in Step 7 of the proof
of Proposition A1 of [9]; he uses there a transformation which does not fix
e1. It suffices to add to his generating set those elements of our generating
set corresponding to unimodular integral matrices A which are congruent to
Ig modulo 4, in order that his Step 7 may be made to work. However, the
later results in Appendix A of [9] remain valid, as do the applications of these
results in the main part of the text.

Lemma A.4 If C ≡ 0 (mod 2), diag(C) ≡ 0 (mod 4) and D ≡ Ig (mod 2)
such that the highest common factor of each row of the 2g× g matrix (C|D)

is 1, then there exists a matrix

(
A B
C D

)
∈ Γ(2).

Sketch. This is really a corollary of the previous theorem; we illustrate the
principle in the case g = 1 and leave the general case to the reader. So
suppose c ≡ 0 (mod 4) and d is odd. Then consider the vector (c, d). As
in the proof of the theorem, we find a sequence of generators (acting on the
right, this time) mapping (c, d) back to (0, 1) (as c and d are coprime). The
inverse of this sequence gives a matrix in Γ(2) sending (0, 1) to (c, d); this
matrix then has the required bottom row. More generally, we use induction
on g, as at the end of the previous proof. ¤
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